Closing Wed: HW_3A,3B,3C (6.1-6.3) Exam 1 is Thurs (4.9, 5.1-5.5, 6.1-6.3)

Entry Task: Find the area of the region bounded by $4x = y^2$ and $y = 2x^3$ in 2 ways: (i) Using dx(ii) Using dy

If we can find the general formula, A(x_i), for the area of a cross-sectional slice, then we can approximate volume by:

Volume of one slice $\approx A(x_i) \Delta x$

Total Volume
$$\approx \sum_{i=1}^{n} A(x_i) \Delta x$$

This approximation gets better and better with more subdivisions, so Exact Volume = $\lim_{n \to \infty} \sum_{i=1}^{\infty} A(x_i) \Delta x$ We conclude Volume = $\int A(x)dx =$ $\int "Cross-sectional area formula" dx$

Volume using cross-sectional slicing

- Draw region. Cut **perpendicular** to rotation axis. Label x if that cut crosses the x-axis (and y if y-axis). Label **everything** in terms this variable.
- 2. Formula for cross-sectional area? disc: Area = π (radius)² washer: Area = π (outer)² - π (inner)² square: Area = (Height)(Length) triangle: Area = ½ (Height)(Length)
- 3. Integrate the area formula.

Example: Consider the region, *R*, bounded by $y = \sqrt{x}$, y = 0, and x = 1. Find the volume of the solid obtained by rotating R about the **x-axis**.

Example: Consider the region, R, bounded by $y = \sqrt{x}$, y = 0, and x = 1. Find the volume of the solid obtained by rotating R about the **y-axis**. Example: Consider the region, R, bounded by y = x and $y = x^4$. Find the volume of the solid obtained by rotating R about the **x-axis**.

- 1. Draw and label!
- 2. Cross-sectional area?
- 3. Integrate area.

Example: Consider the region, R, bounded by y = x and $y = x^4$. (R is the same as the last example).

(a) Now rotate about the horizontal line y = -5. What changes?

(b) Now rotate about the horizontal line y = 10. What changes? Example:

(From an old final and homework)Find the volume of the solid shown.The cross-sections are squares.

- 1. Draw and label!
- 2. Cross-sectional area?
- 3. Integrate area.

Summary (Cross-sectional slicing):

- 1. Draw Label
- 2. Cross-sectional area?
- 3. Integrate area.

This method has a major limitation:

6.2 method about *x-axis*, must use *dx*.6.2 method about *y-axis*, must use *dy*.

What if the regions is rotated about the *x*-axis and we need to use *dy*? (or about *y*-axis and we need dx?) In these cases, 6.2 "Cross-sectional slicing" wouldn't work!

We need another method. That is what we will do in 6.3.