Closing Wed: HW_3A,3B,3C (6.1-6.3)
Exam 1 is Thurs (4.9, 5.1-5.5, 6.1-6.3)
Entry Task:
Find the area of the region bounded by $4 x=y^{2}$ and $y=2 x^{3}$ in 2 ways:
(i) Using $d x$
(ii) Using $d y$

6.2 Finding Volumes Using

Cross-Sectional Slicing

If we can find the general formula, $\mathrm{A}\left(\mathrm{x}_{\mathrm{i}}\right)$, for the area of a cross-sectional slice, then we can approximate volume by:

Volume of one slice $\approx \mathrm{A}\left(\mathrm{x}_{i}\right) \Delta \mathrm{x}$

$$
\text { Total Volume } \approx \sum_{i=1}^{n} \mathrm{~A}\left(\mathrm{x}_{i}\right) \Delta \mathrm{x}
$$

This approximation gets better and better with more subdivisions, so
Exact Volume $=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \mathrm{~A}\left(\mathrm{x}_{i}\right) \Delta \mathrm{x}$
We conclude
Volume $=\int_{a}^{b} A(x) d x=$
b
\int_{a} "Cross-sectional area formula" $d x$

Volume using cross-sectional slicing

1. Draw region. Cut perpendicular to rotation axis. Label x if that cut crosses the x-axis (and y if y-axis). Label everything in terms this variable.
2. Formula for cross-sectional area?

disc:	Area $=\pi(\text { radius })^{2}$
washer:	Area $=\pi(\text { outer })^{2}-\pi(\text { inner })^{2}$
square:	Area $=($ Height $)($ Length $)$
triangle:	Area $=1 / 2($ Height $)($ Length $)$

3. Integrate the area formula.

Example: Consider the region, R , bounded by $y=\sqrt{x}, \mathrm{y}=0$, and $\mathrm{x}=1$. Find the volume of the solid obtained by rotating R about the \boldsymbol{y}-axis.

Example: Consider the region, R , bounded by $y=x$ and $y=x^{4}$.
Find the volume of the solid obtained by rotating R about the \mathbf{x}-axis.

1. Draw and label!
2. Cross-sectional area?
3. Integrate area.

Example: Consider the region, R, bounded by $y=x$ and $y=x^{4}$. (R is the same as the last example).
(a) Now rotate about the horizontal line $y=-5$. What changes?
(b) Now rotate about the horizontal line $y=10$. What changes?

Example:
(From an old final and homework)
Find the volume of the solid shown.
The cross-sections are squares.

1. Draw and label!
2. Cross-sectional area?
3. Integrate area.

Summary (Cross-sectional slicing):

1. Draw Label
2. Cross-sectional area?
3. Integrate area.

This method has a major limitation:
6.2 method about x-axis, must use $d x$.
6.2 method about y-axis, must use $d y$.

What if the regions is rotated about the x-axis and we need to use $d y$? (or about y-axis and we need dx?) In these cases, 6.2 "Cross-sectional slicing" wouldn't work!

We need another method.
That is what we will do in 6.3.

